Login
Create new posts
把计算密集型的东西单独做一个进程出去跑,把计算问题划归为 IO 操作,这样不就可以异步了吗?
1111111111111111111111
一个推广 Weinberg III讨论的refinement CFT中的类似物,待补充
现在mathjax启用braket等包还是用不了; multi line等环境未被正确识别,目前需要手动用放到math mode中
%Abbreviations of Greek letters def \a {\alpha} def \b {\beta} def \g {\gamma} def \G {\Gamma} def \d {\delta} def \D {\Delta} def \e {\epsilon} def \ve {\varepsilon} def \m {\mu} def \n {\nu} def \k {\kappa} def \l {\lambda} def \L {\Lambda} def \s {\sigma} def \S {\Sigma} def \r {\rho} def \o {\omega} def \O {\Omega} def \th {\theta} def \Th {\Theta} def \t {\tau} def \z {\zeta} %Abbreviations of mathbb fonts newcommand{\R}{\mathbb{R}} newcommand{\N}{\mathbb{N}} newcommand{\Z}{\mathbb{Z}} newcommand{\C}{\mathbb{C}} newcommand{\V}{\mathbb{V}} %%vector spaces newcommand{\W}{\mathbb{W}} %%vector spaces %Abbreviations of Lie algebras newcommand{\glie}{\mathfrak{g}} %%generic Lie algebra newcommand{\gllie}{\mathfrak{gl}} %%general linear newcommand{\sllie}{\mathfrak{sl}} %%special linear newcommand{\solie}{\mathfrak{so}} %%special orthogonal newcommand{\splie}{\mathfrak{sp}} %%symplectic newcommand{\nlie}{\mathfrak{n}} %%nilpotent or solvable algebra newcommand{\plie}{\mathfrak{p}} %%nilpotent or solvable algebra newcommand{\hlie}{\mathfrak{h}} %%abelian factor newcommand{\klie}{\mathfrak{k}} %%maximal compact subalgebra newcommand{\blie}{\mathfrak{b}} %%Borel subalgebra %Others newcommand{\greenfunction}[1]{\langle #1\rangle} %%green functions renewcommand{\vev}[1]{\langle #1\rangle} %%green functions renewcommand{\H}{\mathcal{H}} %%Hilbert spaces newcommand{\Ccat}{\mathcal{C}} %%categories newcommand{\Acat}{\mathcal{A}} %%categories newcommand{\Bcat}{\mathcal{B}} %%categories newcommand{\p}{\partial} %%partial derivatives newcommand{\nn}{\nonumber} %due to old version of MathJax newcommand{\set}[1]{{#1}} newcommand{\ket}[1]{\vert #1 \rangle}
%Abbreviations of Greek letters def \a {\alpha} def \b {\beta} def \g {\gamma} def \G {\Gamma} def \d {\delta} def \D {\Delta} def \e {\epsilon} def \ve {\varepsilon} def \m {\mu} def \n {\nu} def \k {\kappa} def \l {\lambda} def \L {\Lambda} def \s {\sigma} def \S {\Sigma} def \r {\rho} def \o {\omega} def \O {\Omega} def \th {\theta} def \Th {\Theta} def \t {\tau} def \z {\zeta} %Abbreviations of mathbb fonts newcommand{\R}{\mathbb{R}} newcommand{\N}{\mathbb{N}} newcommand{\Z}{\mathbb{Z}} newcommand{\C}{\mathbb{C}} newcommand{\V}{\mathbb{V}} %%vector spaces newcommand{\W}{\mathbb{W}} %%vector spaces %Abbreviations of Lie algebras newcommand{\glie}{\mathfrak{g}} %%generic Lie algebra newcommand{\gllie}{\mathfrak{gl}} %%general linear newcommand{\sllie}{\mathfrak{sl}} %%special linear newcommand{\solie}{\mathfrak{so}} %%special orthogonal newcommand{\splie}{\mathfrak{sp}} %%symplectic newcommand{\nlie}{\mathfrak{n}} %%nilpotent or solvable algebra newcommand{\plie}{\mathfrak{p}} %%nilpotent or solvable algebra newcommand{\hlie}{\mathfrak{h}} %%abelian factor newcommand{\klie}{\mathfrak{k}} %%maximal compact subalgebra newcommand{\blie}{\mathfrak{b}} %%Borel subalgebra %Others newcommand{\greenfunction}[1]{\langle #1\rangle} %%green functions renewcommand{\vev}[1]{\langle #1\rangle} %%green functions renewcommand{\H}{\mathcal{H}} %%Hilbert spaces newcommand{\Ccat}{\mathcal{C}} %%categories newcommand{\Acat}{\mathcal{A}} %%categories newcommand{\Bcat}{\mathcal{B}} %%categories newcommand{\p}{\partial} %%partial derivatives newcommand{\nn}{\nonumber} %due to old version of MathJax newcommand{\set}[1]{{#1}}
%Abbreviations of Greek letters def \a {\alpha} def \b {\beta} def \g {\gamma} def \G {\Gamma} def \d {\delta} def \D {\Delta} def \e {\epsilon} def \ve {\varepsilon} def \m {\mu} def \n {\nu} def \k {\kappa} def \l {\lambda} def \L {\Lambda} def \s {\sigma} def \S {\Sigma} def \r {\rho} def \o {\omega} def \O {\Omega} def \th {\theta} def \Th {\Theta} def \t {\tau} def \z {\zeta} %Abbreviations of mathbb fonts newcommand{\R}{\mathbb{R}} newcommand{\N}{\mathbb{N}} newcommand{\Z}{\mathbb{Z}} newcommand{\C}{\mathbb{C}} newcommand{\V}{\mathbb{V}} %%vector spaces newcommand{\W}{\mathbb{W}} %%vector spaces %Abbreviations of Lie algebras newcommand{\glie}{\mathfrak{g}} %%generic Lie algebra newcommand{\gllie}{\mathfrak{gl}} %%general linear newcommand{\sllie}{\mathfrak{sl}} %%special linear newcommand{\solie}{\mathfrak{so}} %%special orthogonal newcommand{\splie}{\mathfrak{sp}} %%symplectic newcommand{\nlie}{\mathfrak{n}} %%nilpotent or solvable algebra newcommand{\hlie}{\mathfrak{h}} %%abelian factor newcommand{\klie}{\mathfrak{k}} %%maximal compact subalgebra newcommand{\blie}{\mathfrak{b}} %%Borel subalgebra %Others %\newcommand{\bra}[1]{\langle #1 \vert} %\newcommand{\ket}[1]{\vert #1 \rangle} %\newcommand{\braket}[2]{\langle #1\vert #2\rangle} %\newcommand{\greenfunction}[1]{\langle #1\rangle} %%green functions newcommand{\vev}[1]{\langle #1\rangle} %%green functions renewcommand{\H}{\mathcal{H}} %%Hilbert spaces newcommand{\Ccat}{\mathcal{C}} %%categories newcommand{\Acat}{\mathcal{A}} %%categories newcommand{\Bcat}{\mathcal{B}} %%categories newcommand{\p}{\partial} %%partial derivatives newcommand{\nn}{\nonumber} %Abbreviations of Lie algebras newcommand{\glie}{\mathfrak{g}} %%generic Lie algebra newcommand{\gllie}{\mathfrak{gl}} %%general linear newcommand{\sllie}{\mathfrak{sl}} %%special linear newcommand{\solie}{\mathfrak{so}} %%special orthogonal newcommand{\splie}{\mathfrak{sp}} %%symplectic newcommand{\nlie}{\mathfrak{n}} %%nilpotent or solvable algebra newcommand{\hlie}{\mathfrak{h}} %%abelian factor newcommand{\klie}{\mathfrak{k}} %%maximal compact subalgebra newcommand{\blie}{\mathfrak{b}} %%Borel subalgebra Shadow transform as an intertwining operator to be added Shadow transform from momentum space Gillioz, Momentum-space conformal blocks on the ight cone 这篇文章讨论如何通过动量空间的完备关系来得到shadow transform。下面我会通过1d CFT的计算来展示这个过程。 一般性的讨论 1d OPE代数, begin{equation} \phi_{i}\left(x_{1}\right) \phi_{j}\left(x_{2}\right)=\sum_{k} c_{i j}^{k} D_{i j}^{k}\left(x_{1}, x_{2},\p_2\right) \phi_{k}\left(x_{2}\right) end{equation} 平移的作用下不是平凡的, D_{i j}^{k}\left(x_{1}, x_{2},\p_2\right)=\frac{1}{|x_{12}|^{\D_{i}+\D_{j}-\D_{k}}}F_{11}\left(\D_{i}-\D_{j}+\D_{k}, 2 \D_{k} ; x_{12} \partial_{2}\right)]
给定标准布朗运动 Bt 假设 s 是个停时,那么 B′t={Bt2Bs−Btif t≤sif t>s 是标准布朗运动。
弱反射原理 mathbb{P}{M_t ge a} = 2mathbb{P}{B_t ge a},其中 M_t = sup_{sin[0,t]}B_s 是布朗运动 B_t 在 [0,t] 内达到的最大值。 它可以写作mathbb{P}{B_t ge a}=dfrac{1}{2}mathbb{P}{M_t ge a},这个在直观上很容易理解,因为 B_t ge a 必然有 M_t ge a,而 M_t 第一次到达 a 之后,后续任何点大于或小于 a 的概率都是 1/2。 强反射原理 给定标准布朗运动 B_t,假设 s 是个停时,那么
begin{equation} B'_t= begin{cases} B_t & text{if } t le s 2B_s-B_t & text{if } t > s end{cases} end{equation}
仍是标准布朗运动。 这实际上就是「第一次到达 a 之后,后续任何点大于或小于 a 的概率都是 1/2」的严格表述。所以后者可以推出前者。
感觉跟 Brownian motion 或者说 Wiener process 的 reflection principle 有关?
找到了相关文章 Formalising Real Numbers in Homotopy Type Theory,让我来看一看。
怎么用类型系统表述戴德金分割呢?
textbf{} extbf{}
我现在懂了,就是戴德金分割
不成立。现在的语法也有这样的歧义
他怎么错误了
虎哥居然还在回复,神奇
Create new posts